Diagonal 6mm (Type 1/3) CCD Image Sensor for NTSC Color Video Cameras

Description

The ICX080AK is an interline CCD solid-state image sensor suitable for NTSC color video cameras. This chip conforms to DV standard SD mode, and has the optimal number of pixels for MPEG2 Main level. While achieving a horizontal resolution of 450 TV lines, the area has been expanded 33% in both vertical and horizontal directions, making the chip suitable for electronic vibration stabilizer and electronic panning/tilting. In addition, complete 16:9 wide aspect ratio images are provided with a high picture quality without requiring vertical interpolation.
High sensitivity and low dark current are achieved through the adoption of $\mathrm{Ye}, \mathrm{Cy}, \mathrm{Mg}$ and G complementary color mosaic filters and HAD (HoleAccumulation Diode) sensors.
This chip features a field period readout system and an electronic shutter with variable chargestorage time.
The package is a 16 -pin DIP (Plastic), and both top and bottom surface reference can be assured at the same time.

Optical black position
(Top View)

Features

- Supports electronic vibration stabilizer and electronic panning/tilting (33\%/one side)
- Supports electronic zoom
- Supports DV standard SD mode and MPEG2 Main level (13.5MHz)
- Supports $16: 9$ wide aspect ratio (for both 18 MHz and 5 fsc)
- Supply voltage: 12V
- Horizontal register and reset gate: 2.7 to 3.6 V drive
- No voltage adjustment (Reset gate and substrate bias are not adjusted.)
- High resolution, high sensitivity, low dark current and low smear
- Excellent antiblooming characteristics
- Continuous variable-speed shutter (1/60 to 1/10000s)
- Supports short exit pupil distance (Recommended range: -20 to -100mm)
- Ye, Cy, Mg and G complementary color mosaic filters on chip
- 16-pin high precision plastic package (both top and bottom surface reference possible)

Device Structure

- Interline CCD image sensor
- Image size:
- Total number of pixels:
- Total number of effective pixels:
- Number of effective pixels: 4:3 NTSC:

16:9 18MHz:
16:9 5fsc:

- Chip size:
- Unit cell size:
- Optical black:
- Number of dummy bits:
- Substrate material:

Diagonal 6 mm (Type $1 / 3$)
1016 (H) x 674 (V) approx. 680K pixels $962(\mathrm{H}) \times 654$ (V) approx. 630K pixels 711 (H) $\times 485$ (V) approx. 340 K pixels 948 (H) 485 (V) approx. 460K pixels 942 (H) $\times 485$ (V) approx. 460 K pixels $5.90 \mathrm{~mm}(\mathrm{H}) \times 4.92 \mathrm{~mm}(\mathrm{~V})$ $5.05 \mu \mathrm{~m}(\mathrm{H}) \times 5.55 \mu \mathrm{~m}(\mathrm{~V})$
Horizontal (H) direction: Front 4 pixels, rear 50 pixels Vertical (V) direction: Front 12 pixels, rear 8 pixels Horizontal 28
Vertical 1 (even fields only) Silicon

Sony reserves the right to change products and specifications without prior notice. This information does not convey any license by any implication or otherwise under any patents or other right. Application circuits shown, if any, are typical examples illustrating the operation of the devices. Sony cannot assume responsibility for any problems arising out of the use of these circuits.

Block Diagram and Pin Configuration

（Top View）

Pin Description

Pin No．	Symbol	Description	Pin No．	Symbol	Description
1	V $\phi 4$	Vertical register transfer clock	9	VDD	Supply voltage
2	V $\phi 3$	Vertical register transfer clock	10	GND	GND
3	V $\phi 2$	Vertical register transfer clock	11	ϕ SUB	Substrate clock
4	V $\phi 1$	Vertical register transfer clock	12	CsuB	Substrate bias ${ }^{* 1}$
5	GND	GND	13	VL	Protective transistor bias
6	GND	GND	14	$\phi R G$	Reset gate clock
7	GND	GND	15	$\mathrm{H} \phi 1$	Horizontal register transfer clock
8	Vout	Signal output	16	$\mathrm{H} \phi 2$	Horizontal register transfer clock

＊1 DC bias is generated within the CCD，so that this pin should be grounded externally through a capacitance of $0.1 \mu \mathrm{~F}$ ．

Absolute Maximum Ratings

Item		Ratings	Unit	Remarks
Against ϕ SUB	Vdd，Vout，ϕ RG－ϕ SUB	－40 to＋10	V	
	V $\phi 1, \mathrm{~V}$ ¢ $3-\phi$ SUB	-50 to +15	V	
	V $\phi 2, \mathrm{~V} \phi 4, \mathrm{~V}$－$-\phi$ SUB	-50 to +0.3	V	
	Hф1，Hф2，GND－ϕ SUB	-40 to +0.3	V	
	Csub－ϕ SUB	－25 to	V	
Against GND	Vdd，Vout，ϕ RG，Csub－GND	-0.3 to +18	V	
	$\mathrm{V} \phi 1, \mathrm{~V} \mathbf{V}_{2}, \mathrm{~V} \phi 3, \mathrm{~V} \phi_{4}$－GND	-10 to＋18	V	
	$\mathrm{H}_{\phi 1}, \mathrm{H}_{\phi} 2$－GND	-10 to +5	V	
Against VL	$\mathrm{V}_{\phi 1}{ }_{1} \mathrm{~V}_{\phi} 3$－ V_{L}	－0．3 to＋28	V	
	V\＄2，V\＄4，H\＄1，H中2，GND－VL	－0．3 to＋15	V	
Between input clock pins	Voltage difference between vertical clock input pins	to＋15	V	＊2
	H中1－H中2	-5 to＋5	V	
	$\mathrm{H}_{\phi 1}, \mathrm{H}_{\phi 2}-\mathrm{V}_{\phi} 4$	-13 to +13	V	
Storage temperature		-30 to＋80	${ }^{\circ} \mathrm{C}$	
Operating temperature		-10 to＋60	${ }^{\circ} \mathrm{C}$	

[^0]Bias Conditions

Item	Symbol	Min.	Typ.	Max.	Unit	Remarks
Supply voltage	VDD	11.64	12.0	12.36	V	
Protective transistor bias	VL	${ }^{*} 1$				
Substrate clock	фSUB	${ }^{*} 2$				
Reset gate clock		RG	${ }^{*} 2$			

*1 VL setting is the VvL voltage of the vertical transfer clock waveform, or the same power supply as the VL power supply for the V driver should be used.
*2 Do not apply a DC bias to the substrate clock and reset gate clock pins, because a DC bias is generated within the CCD.

DC Characteristics

Item	Symbol	Min.	Typ.	Max.	Unit	Remarks
Supply current	IDD		6.0		mA	

Clock Voltage Conditions

Item	Symbol	Min.	Typ.	Max.	Unit	Waveform diagram	Remarks
Readout clock voltage	Vit	11.64	12.0	12.36	V	1	
Vertical transfer clock voltage	VvH1, VVH2	-0.05	0	0.05	V	2	$\mathrm{VVH}=(\mathrm{VVH1}+\mathrm{VVH2}) / 2$
	Vvh3, VvH4	-0.2	0	0.05	V	2	
	Vvl1, Vvl2, Vvl3, VvL4	-6.85	-6.5	-6.15	V	2	$\mathrm{VVL}=(\mathrm{VVL3}+\mathrm{VVL4}) / 2$
	V¢v	5.95	6.5	6.9	V	2	V ¢ $\mathrm{V}=\mathrm{VvHn}-\mathrm{VvLn}(\mathrm{n}=1$ to 4)
	VVн3 - Vve	-0.25		0.1	V	2	
	VVH4 - VVH	-0.25		0.1	V	2	
	Vvнн			0.5	V	2	High-level coupling
	VVHL			0.5	V	2	High-level coupling
	VvLH			0.5	V	2	Low-level coupling
	VvLL			0.5	V	2	Low-level coupling
Horizontal transfer clock voltage	V中H	2.7	3.3	3.6	V	3	
	VHL	-0.05	0	0.05	V	3	
	VCR	0.5	1.65		V	3	Cross-point voltage
Reset gate clock voltage	V¢RG	2.7	3.3	3.6	V	4	
	VRgLH - Vrglt			0.4	V	4	Low-level coupling
	Vrgl - Vrglm			0.5	V	4	Low-level coupling
Substrate clock voltage	VфSub	17.3	18.5	19.3	V	5	

Clock Equivalent Circuit Constant

Item	Symbol	Min.	Typ.	Max.	Unit	Remarks
Capacitance between vertical transfer clock and GND	Cфv1, Cфv3		1000		pF	
	Cфv2, Cфv4		560		pF	
Capacitance between vertical transfer clocks	CфV12, Cфv34		470		pF	
	Cфv23, Cфv41		390		pF	
	CфV13		180		pF	
	CфV24		100		pF	
Capacitance between horizontal transfer clock and GND	Cфн1, Сфн ${ }^{\text {2 }}$		62		pF	
Capacitance between horizontal transfer clocks	Сфнн		62		pF	
Capacitance between reset gate clock and GND	CфRG		12		pF	
Capacitance between substrate clock and GND	Cфsub		270		pF	
Vertical transfer clock series resistor	$\mathrm{R}_{1}, \mathrm{R}_{2}, \mathrm{R}_{3}, \mathrm{R}_{4}$		82		Ω	
Vertical transfer clock ground resistor	Rgnd		15		Ω	
Horizontal transfer clock series resistor	Rфн		3		Ω	
Horizontal transfer clock ground resistor	RH2		30		$\mathrm{k} \Omega$	

Vertical transfer clock equivalent circuit

Horizontal transfer clock equivalent circuit

Drive Clock Waveform Conditions

(1) Readout clock waveform

(2) Vertical transfer clock waveform
(

$$
\begin{aligned}
& \mathrm{VVH}=\left(\mathrm{VVH1}+\mathrm{VVH}_{\mathrm{V} 2}\right) / 2 \\
& \mathrm{VVL}=\left(\mathrm{VVL3}+\mathrm{VVL4}^{2} / 2\right. \\
& \mathrm{V}_{\phi \mathrm{V}}=\mathrm{VVHn}_{\mathrm{VH}}-\mathrm{VVLn}_{\mathrm{V}}(\mathrm{n}=1 \text { to } 4)
\end{aligned}
$$

(3) Horizontal transfer clock waveform

Cross-point voltage for the $\mathrm{H}_{\phi 1}$ rising side of the horizontal transfer clocks $\mathrm{H} \phi 1$ and $\mathrm{H} \phi 2$ waveforms is Vcr. The overlap period for twh and twl of horizontal transfer clocks $\mathrm{H} \phi 1$ and $\mathrm{H} \phi 2$ is two.

(4) Reset gate clock waveform

Vrglh is the maximum value and Vrgll is the minimum value of the coupling waveform during the period from Point A in the above diagram until the rising edge of RG. In addition, Vrgl is the average value of Vrglh and Vrgll.

$$
V_{\text {RGL }}=\left(V_{\text {RGLL }}+V_{\text {RGLL }}\right) / 2
$$

Assuming $\mathrm{V}_{\mathrm{rgh}}$ is the minimum value during the interval twh, then:

$$
V_{\phi R G}=V_{R G H}-V_{R G L} .
$$

Negative overshoot level during the falling edge of RG is VRGLm.

(5) Substrate clock waveform

Clock Switching Characteristics

Item		Symbol	twh			twl			tr			tf			Unit	Remarks	
		Min.	Typ.	Max.													
Readout clock			V_{T}	1.36	1.56						0.5			0.5		$\mu \mathrm{s}$	During readout
Vertical transfer clock		$\mathrm{V} \phi 1, \mathrm{~V}{ }_{\phi 2}$, Vф3, Vф4										15		250	ns	During CXD1267AN used	
	During imaging	H中1	14	19.5		14	19.5			8.5	14		8.5	14	ns	$\mathrm{tf} \geq \mathrm{tr}-2 \mathrm{~ns}$	
		H中2	14	19.5		14	19.5			8.5	14		8.5	14			
	During parallel-serial conversion	${ }_{\text {H }}^{1} 1$		5.56						0.01			0.01		$\mu \mathrm{s}$		
		Hф2					5.56			0.01			0.01				
Reset gate clock		¢RG	7	10			37			4			5		ns		
Substrate clock		фSUB	1.7	3.06							0.5			0.5	$\mu \mathrm{s}$	During drain charge	

Item	Symbol	two			Unit	Remarks
		Min.	Typ.	Max.		
Horizontal transfer clock		12	19.5		ns	

Spectral Sensitivity Characteristics (excludes both lens characteristics and light source characteristics)

Image Sensor Characteristics
$\left(\mathrm{Ta}=25^{\circ} \mathrm{C}\right)$

Item	Symbol	Min.	Typ.	Max.	Unit	Measurement method	Remarks
Sensitivity	S	240	300		mV	1	
Saturation signal	Ysat	600			mV	2	$\mathrm{Ta}=60^{\circ} \mathrm{C}$
Smear	Sm		0.009	0.015	\%	3	
Video signal shading	SHy			20	\%	4	Zone 0 and I
				25	\%	4	Zone 0 to II'
Uniformity between video signal channels	$\Delta \mathrm{Sr}$			10	\%	5	
	$\Delta \mathrm{Sb}$			10	\%	5	
Dark signal	Ydt			2	mV	6	$\mathrm{Ta}=60^{\circ} \mathrm{C}$
Dark signal shading	$\Delta \mathrm{Ydt}$			1	mV	7	$\mathrm{Ta}=60^{\circ} \mathrm{C}$, ${ }^{1}$
Flicker Y	Fy			2	\%	8	
Flicker R-Y	Fcr			5	\%	8	
Flicker B-Y	Fcb			5	\%	8	
Line crawl R	Lcr			3	\%	9	
Line crawl G	Lcg			3	\%	9	
Line crawl B	Lcb			3	\%	9	
Line crawl W	Lcw			3	\%	9	
Lag	Lag			0.5	\%	10	

*1 Excludes vertical dark signal shading caused by vertical register high-speed transfer.

Zone Definition of Video Signal Shading

Measurement System

Note) Adjust the amplifier gain so that the gain between [* A] and [${ }^{\mathrm{Y}} \mathrm{Y}$], and between [$\left.{ }^{*} \mathrm{~A}\right]$ and $\left[{ }^{*} \mathrm{C}\right.$] equals 1 .

Image Sensor Characteristics Measurement Method

© Measurement conditions

1) In the following measurements, the device drive conditions are at the typical values of the bias and clock voltage conditions.
2) In the following measurements, spot blemishes are excluded and, unless otherwise specified, the optical black level (OB) is used as the reference for the signal output, which is taken as the value of Y signal output or chroma signal output of the measurement system.
© Color coding of this image sensor \& Composition of luminance (Y) and chroma (color difference) signals

As shown in the left figure, fields are read out. The charge is mixed by pairs such as A1 and A2 in the A field. (pairs such as B in the B field)
As a result, the sequence of charges output as signals from the horizontal shift register (Hreg) is, for line A1, ($G+C y$), $(M g+Y e),(G+C y)$, and $(M g+Y e)$.

These signals are processed to form the Y signal and chroma (color difference) signal. The Y signal is formed by adding adjacent signals, and the chroma signal is formed by subtracting adjacent signals. In other words, the approximation:

$$
\begin{aligned}
Y & =\{(G+C y)+(M g+Y e)\} \times 1 / 2 \\
& =1 / 2\{2 B+3 G+2 R\}
\end{aligned}
$$

is used for the Y signal, and the approximation:

$$
\begin{aligned}
R-Y & =\{(M g+Y e)-(G+C y)\} \\
& =\{2 R-G\}
\end{aligned}
$$

is used for the chroma (color difference) signal. For line A2, the signals output from Hreg in sequence are

$$
(M g+C y),(G+Y e),(M g+C y),(G+Y e) .
$$

The Y signal is formed from these signals as follows:

$$
\begin{aligned}
Y & =\{(G+Y e)+(M g+C y)\} \times 1 / 2 \\
& =1 / 2\{2 B+3 G+2 R\}
\end{aligned}
$$

This is balanced since it is formed in the same way as for line A1.
In a like manner, the chroma (color difference) signal is approximated as follows:

$$
\begin{aligned}
-(B-Y) & =\{(G+Y e)-(M g+C y)\} \\
& =-\{2 B-G\}
\end{aligned}
$$

In other words, the chroma signal can be retrieved according to the sequence of lines from $R-Y$ and $-(B-Y)$ in alternation. This is also true for the B field.

() Definition of standard imaging conditions

1) Standard imaging condition I:

Use a pattern box (luminance $706 \mathrm{~cd} / \mathrm{m}^{2}$, color temperature of 3200 K halogen source) as a subject. (Pattern for evaluation is not applicable.) Use a testing standard lens with CM500S ($\mathrm{t}=1.0 \mathrm{~mm}$) as an IR cut filter and image at F5.6. The luminous intensity to the sensor receiving surface at this point is defined as the standard sensitivity testing luminous intensity.
2) Standard imaging condition II:

Image a light source (color temperature of 3200 K) with a uniformity of brightness within 2% at all angles. Use a testing standard lens with CM500S ($\mathrm{t}=1.0 \mathrm{~mm}$) as an IR cut filter. The luminous intensity is adjusted to the value indicated in each testing item by the lens diaphragm.
3) Standard imaging condition III:

Image a light source (color temperature of 3200 K) with a uniformity of brightness within 2% at all angles. Use a testing standard lens (exit pupil distance -33 mm) with CM500S ($t=1.0 \mathrm{~mm}$) as an IR cut filter. The luminous intensity is adjusted to the value indicated in each testing item by the lens diaphragm.

1. Sensitivity

Set to standard imaging condition I. After selecting the electronic shutter mode with a shutter speed of $1 / 250$ s, measure the Y signal (Ys) at the center of the screen and substitute the value into the following formula.
$S=Y s \times \frac{250}{60}[\mathrm{mV}]$
2. Saturation signal

Set to standard imaging condition II. After adjusting the luminous intensity to 10 times the intensity with average value of the Y signal output, 200 mV , measure the minimum value of the Y signal.
3. Smear

Set to standard imaging condition II. With the lens diaphragm at F5.6 to F8, adjust the luminous intensity to 500 times the intensity with average value of the Y signal output, 200 mV . When the readout clock is stopped and the charge drain is executed by the electronic shutter at the respective H blankings, measure the maximum value $\mathrm{YSm}[\mathrm{mV}]$ of the Y signal output and substitute the value into the following formula.
$S m=\frac{Y S m}{200} \times \frac{1}{500} \times \frac{1}{10} \times 100[\%](1 / 10 \mathrm{~V}$ method conversion value)
4. Video signal shading

Set to standard imaging condition III. With the lens diaphragm at F5.6 to F8, adjust the luminous intensity so that the average value of the Y signal output is 200 mV . Then measure the maximum (Ymax [mV]) and minimum (Ymin $[\mathrm{mV}]$) values of the Y signal and substitute the values into the following formula.
$\mathrm{SHy}=(\mathrm{Ymax}-\mathrm{Ymin}) / 200 \times 100[\%]$
5. Uniformity between video signal channels

Set to standard imaging condition II. Adjust the luminous intensity so that the average value of the Y signal output is 200 mV , and then measure the maximum (Crmax, Cbmax [mV]) and minimum (Crmin, Cbmin $[\mathrm{mV}]$) values of the $R-Y$ and $B-Y$ channels of the chroma signal and substitute the values into the following formula.
$\Delta \mathrm{Sr}=|(\mathrm{Crmax}-\mathrm{Crmin}) / 200| \times 100$ [\%]
$\Delta \mathrm{Sb}=|(\mathrm{Cbmax}-\mathrm{Cbmin}) / 200| \times 100$ [\%]
6. Dark signal

Measure the average value of the Y signal output (Ydt [mV]) with the device ambient temperature $60^{\circ} \mathrm{C}$ and the device in the light-obstructed state, using the horizontal idle transfer level as a reference.
7. Dark signal shading

After measuring 6, measure the maximum (Ydmax [mV]) and minimum (Ydmin [mV]) values of the Y signal output and substitute the values into the following formula.
$\Delta \mathrm{Ydt}=\mathrm{Ydmax}-\mathrm{Ydmin}[\mathrm{mV}]$
8. Flicker

1) Fy

Set to standard imaging condition II. Adjust the luminous intensity so that the average value of the Y signal output is 200 mV , and then measure the difference in the signal level between fields ($\Delta \mathrm{Yf}[\mathrm{mV}]$). Then substitute the value into the following formula.
$F y=(\Delta Y f / 200) \times 100[\%]$
2) $\mathrm{Fcr}, \mathrm{Fcb}$

Set to standard imaging condition II. Adjust the luminous intensity so that the average value of the Y signal output is 200 mV , insert an R and B filter, and then measure both the difference in the signal level between fields of the chroma signal $(\Delta \mathrm{Cr}, \Delta \mathrm{Cb})$ as well as the average value of the chroma signal output (CAr, CAb). Substitute the values into the following formula.
$\mathrm{Fci}=(\Delta \mathrm{Ci} / \mathrm{CAi}) \times 100[\%] \quad(\mathrm{i}=\mathrm{r}, \mathrm{b})$
9. Line crawls

Set to standard imaging condition II. Adjust the luminous intensity so that the average value of the Y signal output is 200 mV , and then insert a white subject and R, G, and B filters and measure the difference between Y signal lines for the same field ($\Delta \mathrm{Ylw}, \Delta \mathrm{Ylr}, \Delta \mathrm{Ylg}, \Delta \mathrm{Ylb}[\mathrm{mV}]$). Substitute the values into the following formula.

Lci $=(\Delta \mathrm{Yli} / 200) \times 100[\%] \quad(\mathrm{i}=\mathrm{w}, \mathrm{r}, \mathrm{g}, \mathrm{b})$
10. Lag

Adjust the Y signal output value generated by strobe light to 200 mV . After setting the strobe light so that it strobes with the following timing, measure the residual signal (Ylag). Substitute the value into the following formula.

Lag $=(\mathrm{Ylag} / 200) \times 100$ [\%]

Drive Circuit

Drive Timing Chart (Vertical Sync)
Drive Timing Chart (Vertical Sync "a" Enlarged)

Drive Timing Chart (Vertical Sync "b" Enlarged)

Drive Timing Chart (Horizontal Sync)

Notes on Handling

1) Static charge prevention

CCD image sensors are easily damaged by static discharge. Before handling be sure to take the following protective measures.
a) Either handle bare handed or use non-chargeable gloves, clothes or material.

Also use conductive shoes.
b) When handling directly use an earth band.
c) Install a conductive mat on the floor or working table to prevent the generation of static electricity.
d) lonized air is recommended for discharge when handling CCD image sensor.
e) For the shipment of mounted substrates, use boxes treated for the prevention of static charges.

2) Soldering

a) Make sure the package temperature does not exceed $80^{\circ} \mathrm{C}$.
b) Solder dipping in a mounting furnace causes damage to the glass and other defects. Use a ground 30W soldering iron and solder each pin in less than 2 seconds. For repairs and remount, cool sufficiently.
c) To dismount an image sensor, do not use a solder suction equipment. When using an electric desoldering tool, use a thermal controller of the zero cross On/Off type and connect it to ground.
3) Dust and dirt protection

Image sensors are packed and delivered by taking care of protecting its glass plates from harmful dust and dirt. Clean glass plates with the following operation as required, and use them.
a) Perform all assembly operations in a clean room (class 1000 or less).
b) Do not either touch glass plates by hand or have any object come in contact with glass surfaces. Should dirt stick to a glass surface, blow it off with an air blower. (For dirt stuck through static electricity ionized air is recommended.)
c) Clean with a cotton bud and ethyl alcohol if the grease stained. Be careful not to scratch the glass.
d) Keep in a case to protect from dust and dirt. To prevent dew condensation, preheat or precool when moving to a room with great temperature differences.
e) When a protective tape is applied before shipping, just before use remove the tape applied for electrostatic protection. Do not reuse the tape.
4) Installing (attaching)
a) Remain within the following limits when applying a static load to the package. Do not apply any load more than 0.7 mm inside the outer perimeter of the glass portion, and do not apply any load or impact to limited portions. (This may cause cracks in the package.)

b) If a load is applied to the entire surface by a hard component, bending stress may be generated and the package may fracture, etc., depending on the flatness of the bottom of the package. Therefore, for installation, use either an elastic load, such as a spring plate, or an adhesive.
c) The adhesive may cause the marking on the rear surface to disappear, especially in case the regulated voltage value is indicated on the rear surface. Therefore, the adhesive should not be applied to this area, and indicated values should be transferred to the other locations as a precaution.
d) The notch of the package is used for directional index, and that can not be used for reference of fixing. In addition, the cover glass and seal resin may overlap with the notch of the package.
e) If the lead bend repeatedly and the metal, etc., clash or rub against the package, the dust may be generated by the fragments of resin.
f) Acrylate anaerobic adhesives are generally used to attach CCD image sensors. In addition, cyanoacrylate instantaneous adhesives are sometimes used jointly with acrylate anaerobic adhesives. (reference)

5) Others

a) Do not expose to strong light (sun rays) for long periods, color filters will be discolored. When high luminance objects are imaged with the exposure level control by electronic-iris, the luminance of the image-plane may become excessive and discolor of the color filter will possibly be accelerated. In such a case, it is advisable that taking-lens with the automatic-iris and closing of the shutter during the power-off mode should be properly arranged. For continuous using under cruel condition exceeding the normal using condition, consult our company.
b) Exposure to high temperature or humidity will affect the characteristics. Accordingly avoid storage or usage in such conditions.
c) The brown stain may be seen on the bottom or side of the package. But this does not affect the CCD characteristics.
Unit: mm

PACKAGE STRUCTURE

PACKAGE MATERIAL	Plastic
LEAD TREATMENT	GOLD PLATING
LEAD MATERIAL	42 ALLOY
PACKAGE WEIGHT	0.9 g

[^0]: ＊2 +24 V （Max．）when clock width $<10 \mu \mathrm{~s}$ ，clock duty factor $<0.1 \%$ ．

